電磁ノイズ抑制構造に関する研究

製品·機能評価課 宮田直幸 佐々木克浩*1

1. 緒言

電子機器は電磁ノイズを発生し、それによる誤動作が 問題となることから、EMC (Electromagnetic Compatibility) に関する国際規格 CISPR では許容される放射エミッショ ン等の限度値が規定されており、電子機器を製造・販売す るためにはそれらの規格値を満たすことが重要となって いる。

特に多層基板における電源/グラウンド層間の端部か ら漏れる電磁ノイズは PI (Power Integrity) や SI (Signal Integrity)の観点からも問題となっているが、高周波のた め寄生インダクタンスが問題となり、デカップリングコ ンデンサを使った対策が難しい。

この問題に対し、メタマテリアルの一種である EBG (Electromagnetic Bandgap)構造を利用した方法が提案さ れている¹⁾²⁾³⁾。これは、導体に周期的な構造を持たせるこ とで電磁波のバンド分散にギャップが開き、ギャップ内 の周波数では伝播できなくなることを利用したものであ る。

本研究では、前年度までに検討した渦巻き状オープン スタブ³⁾で一定幅のタイプと先端の幅が広いタイプにつ いて実験を行い、数値計算結果と比較した。Fig.1(a)にそ の構造の断面、Fig.1(b)(c)に渦巻き状の部分をそれぞれ示 す。

2. 手法

2.1 計算手法

具体的な計算手法として、前年度同様 FDTD 法 4を用 いた。境界条件には吸収境界条件ではなく、Bloch の定理 による境界条件を課し、時間波形を FFT することでバン ド分散を得ることができる。

2.2 実験手法

論文³⁾に倣い、プローブを当てるためのパッドを、1、 3、6、9 セルを間に挟むように設けた 20×20 セルの評価基 板を作製し (Fig. 2)、Rohde & Schwarz 社製のベクトル ネットワークアナライザ ZVA24 で通過特性 *S*₂₁ を測定し た。正方形セルの一辺 2.1mm、マイクロストリップ側基 板厚 0.06mm、層導体間 0.66mm、導体厚 0.018mm、ビア の直径 0.25mm、線幅 0.1mm、線間ギャップ 0.1mm、幅 が広い部分の幅 0.2.mm、誘電体 (Fig. 1, 2 のグレー部分) の比誘電率 4.5 とした。

Fig. 1 EBG structures using spiral open stubs (a) Cross sectional view. (b)(c) Top view of a spiral open stub of (b) fixed-width type and (c) club-shaped type. (Black : PEC, Other color : dielectric substrate)

Fig. 2 An example of fabricated sample boards with EBG structures shown in Fig. 1

3. 結果

3.1 計算結果

Fig. 3 に FDTD 法による結果を示す。一定幅のタイプで は 1.9GHz~3.3GHz と 5.66GHz~6.91GHz に、先端の幅が 広いタイプでは 2.05GHz~3.85GHz と 7.15GHz~8.68GHz にバンドギャップができていることがわかる。

Fig. 3 Dispersion diagram of EBG structures

Fig. 4 Measured transmission coefficient (S_{21}). (a) Fixed-width type. (b) Club-shaped type

3.2 実験結果と考察

Fig. 4 (a)(b)にそれぞれ一定幅タイプと先端の幅が広い タイプの結果を示す。数値計算で得られたバンドギャッ プの上端と下端の位置を破線で示した。どちらのタイプ もバンドギャップの位置で、パッド間のセル数が増加す るにつれて S21が単調に低下していることがわかる。ここ で注意すべきことは、電源/グラウンド層はインピーダ ンスが整合するように設計されているわけではないので、 反射やパッド以外の部分への散乱の影響も受けていると いうことである。つまり、EBG 構造による効果を単独で 取り出して評価することは難しい。実際、ここでは示さな いが EBG 構造の渦巻き状オープンスタブだけを評価基 板から取り除いたものにおいても、EBG 構造のある評価 基板よりも S21 が低下している周波数もあった。バンドギ ャップ外の周波数において、パッド間のセル数の増加に 対して非単調に変化しているのは、そのことの一つの現 れとも考えられる。同時に、それにもかかわらずバンドギ ャップ内の周波数でパッド間のセル数の増加とともに単 調に低下しているということは、そのような複雑な要因 を上回って電磁ノイズの伝播が抑制されていることを示 していると考えられる。

4. 結言

既存の EBG 構造とその変形について実験による評価 を行ったところ、数値計算結果による予測と良好な一致 を示した。S21の低下から、本構造により多層基板端部か ら放射される電磁ノイズ(放射エミッション)が低減され るという有用性が確認できたとともに、数値計算による 事前のバンドギャップの見積もりの有効性を確認できた。

参考文献

- R. Abhari *et al.*, Microwave Theory and Techniques, IEEE Transactions on., Vol. 51, No. 6, pp. 1629-1639 (2003)
- 2) T. L. Wu *et al.*, Microwave Theory and Techniques, IEEE Transactions on., Vol. 53, No. 9, pp. 2935-2942 (2005)
- H. Toyao *et al.*, IEIEC TRANSACTIONS on Communications, Vol. E93-B, No. 7, pp. 1754-1759 (2010)
- A. Taflove and S. C. Hagness : Computational electrodynamics, ARTECH HOUSE (2005)

キーワード:EMC、電磁波、EBG

Development of Metamaterial Structures for Suppression of Electromagnetic Noise

Product and Function Evaluation Section; Naoyuki MIYATA and Katsuhiro SASAKI

Open stub electromagnetic bandgap (EBG) structures formed on power/ground plane of multilayer printed circuit boards (PCBs) were studied. Two types of sample boards, the fixed-width type and the club-shaped type, were fabricated, and their transmission coefficients S_{21} were measured using network analyzer. For both types the magnitude of S_{21} were significantly suppressed in the bandgap frequency range estimated by using FDTD simulation.