酸化物系固体電解質を採用した厚膜二次電池の開発

電子デバイス技術課 角田龍則

機械情報システム課 本保栄治*1

1. 緒言

リチウムイオン二次電池は、高出力蓄電池として様々 な電気機器に採用されており、今後、電気自動車や IoT 関連の市場が急速に拡大していくとともに、ますます需 要増が期待されるデバイスである。現在、多くの研究機 関で高容量化・高信頼性化を目標に、様々な電池材料が 開発されている。その中でも固体電解質二次電池は、デ バイス全体が流動しない固体電池であり、リチウム単一 イオン伝導の電池である。液体の有機溶媒を使用しない ため発火の心配がなく、電解液の分解副生成物による特 性劣化が起きないという利点がある。一般的に固体は界 面制御をクリアできれば取り扱いが楽であり、また、電 池のエネルギー密度を上げることによる短絡の危険性を 大幅に低減でき、高い長期信頼性と高出力特性が実現で きると考えられている。

現在、代表的な固体電解質には、硫化物系と酸化物系 があり、硫化物系は比較的容易に固体界面を形成できる という特徴がある。また、酸化物系は、硫化水素発生の 恐れがなく、高温焼結することで界面を形成し高いリチ ウム伝導特性を得ることができる。本開発では、酸化物 系固体電解質を採用した厚膜二次電池を開発することを 目的として研究を行った。

2. 実験内容

2.1 固体電解質材料の作製

まず、固体電解質材料を得るために Li(OH)と La(OH)3、 Li(OH)と ZrO₂の粉末をそれぞれ混合し所定の温度で焼 成した。図1は作製した LaLiO₂の X線回折プロファイ ルを、図2は Li₂ZrO₃のプロファイル示す。LaLiO₂のプ ロファイルでは La(OH)3比率を減らすと La₂O₃のピーク が減少し、不純物の少ない LaLiO₂ が合成できた。

また、Li₂ZrO₃のプロファイルでは ZrO₂ 量を増やすこと で Li₃Zr₂O₇の合成を減らすことができた。これらの結果 より Li(OH)、La(OH)₃ および ZrO₂ の配合比が決定でき、 比較的高純度の LaLiO₂(98%)と Li₂ZrO₃(99%)がそれぞれ 作製できた。

次に、得られた LaLiO₂、Li₂ZrO₃ と Al(OH)₃ を混合し、 所定の温度(950°C)で焼成をおこなった。図 3 は作製した 立方晶 Li_{7-3x}La₃Zr₂Al_xO₁₂(LLZA)の X 線回折プロファイル を示す。Al(OH)₃ 添加量が 0%の場合、ピーク半値幅が狭 く結晶性のよい Li₇La₃Zr₂O₁₂ (LLZ)が合成された。また Al(OH)₃ の添加量を増やすと、半値幅は大きくなるが、 分離していた 2 θ =31,34°付近のピークが一つになり、結 晶系が正方晶から立方晶に変化していることがわかる。 本試作では Al(OH)₃ が 2~4%の場合、もっとも不純物の 少ない LLZA が作製できた。

Fig. 3 X-ray diffraction patterns of LLZA powders

さらに、Al(OH)34%添加して圧力をかけながら焼成し、 板状試料の作製を試みた。圧力 300kg/cm² で所定の温度 で焼成したところ、空孔の少ない高密度なLLZA 板が作 製できた。図4は圧力をかけながら焼成した立方晶LLZA の断面 SEM 画像である。断面加工はイオンミリングで おこなった。950°C で加圧焼結した試料は、粒子間の密 着性は低くないが、空孔部が多く見られ粒界も確認でき 粒子間界面の抵抗は高いと予想された。1200°C で加工し たものは、わずかに空孔は見られるものの粒界がほとん ど観察できなかった。また、加圧なしで 1200°C 焼成し たものは、空孔部は減少しているが、ほとんどの粒子径 が数µm と小さいままで、加圧したサンプルと比較する と粒成長が進んでいなかった。さらに1200°C 焼成では、 元素分析から、Li2ZrO3が多く生成されることがわかった。

Fig. 4 Micrograph of LLZA cross sectional surface (a:950°C b:1200°C no press sintering c:1200°C)

図5は、LLZA 板のX線回折プロファイルである。焼 成温度を1200℃ に上げると、ピークの半値幅が小さく なり、結晶化が進んでいることがわかる。また、Li₂ZrO₃ が生成され、加圧焼成したものは LaAlO₃ ペロブスカイ トも生成されている。粒子の密着性を上げ、粒界抵抗を 下げるために高温で焼成すると、LLZA だけでなくそれ 以外の化合物も合成されてしまうことがわかった。

次に、作製した板状 LLZA にインジウム電極を溶融塗 布し、電池セル内で伝導度測定をおこなった。表 1 は LLZA 板の焼成条件と算出したイオン伝導度を示す。 1200°C で加圧焼成した場合にもっとも高い伝導度を示 した。

Table 1 Ion Conductivity	of	LL	_ZA	sheets
--------------------------	----	----	-----	--------

焼成温度 (°C)	950	950	1200	1200
加圧有無	無	有	無	有
抵抗値 (Ω)	測定不可	14,000	10,100	1,250
厚さ / 面積 (cm ⁻¹)	_	0.09 / 1.00	0.11 / 0.25	0.10 / 0.35
伝導度 (S/cm)	_	7.0×10 ⁶	4.4×10 ⁵	2.3×10 ⁻⁴

2.2 厚膜二次電池の作製

1200°C で加圧焼成した LLZA 電解質板に、正極活物 質を印刷焼成し、さらに Ag 電極を印刷成膜した。正極 の反対面に Li 金属を溶融塗布し評価セルにセットして、 単層の多層の電池構造を作製した。作製した試料の充放 電試験を実施したが、充放電は確認できなかった。イオ ン伝導度がある程度高いことを確認しており、今回電池 特性を示さなかった原因は、試料厚みが約 1mm と大き く、内部抵抗が十分低くなかったためと考えられる。

3. 結言

本研究では、固体電解質 LLZA(Li_{7-3x}La₃Zr₂Al_xO₁₂)を固 相法で作製し、高いイオン伝導度を持つ板状試料を作製 できた。さらにスクリーン印刷法により正極の厚膜パタ ーンを形成して、二次電池の電気特性の評価を行ったが、 充放電特性を確認することはできなかった。電解質板厚 が大きく電池の内部抵抗が大きくなったことが原因と考 えられるため、電解質材料の高い伝導特性と空孔の少な い結晶界面形成を維持しながら、電解質層の薄板化を達 成することが必要である。

キーワード:酸化物系固体電解質、二次電池、X線回折、厚膜、リチウム

Development of the Thick Film Secondary Battery Using Oxide-based Solid Electrolyte

Electronics and Device Technology Section; Tatsunori KAKUDA and Eiji HONBO

In this study, we improved the lithium ion secondary battery using a solid electrolyte experimentally. Specifically, we improved solid electrolyte $LLZA(Li_{7-3x}La_3Zr_2Al_xO_{12})$ by solid-phase method and formed a thick film pattern by the screen-printing method and evaluated the electric characteristic of the secondary battery.